Approximating Interactive Human Evaluation with Self-Play for Open-Domain Dialog Systems

Abstract

Building an open-domain conversational agent is a challenging problem. Current evaluation methods, mostly post-hoc judgments of static conversation, do not capture conversation quality in a realistic interactive context. In this paper, we investigate interactive human evaluation and provide evidence for its necessity; we then introduce a novel, model-agnostic, and dataset-agnostic method to approximate it. In particular, we propose a self-play scenario where the dialog system talks to itself and we calculate a combination of proxies such as sentiment and semantic coherence on the conversation trajectory. We show that this metric is capable of capturing the human-rated quality of a dialog model better than any automated metric known to-date, achieving a significant Pearson correlation (r>.7, p<.05). To investigate the strengths of this novel metric and interactive evaluation in comparison to state-of-the-art metrics and human evaluation of static conversations, we perform extended experiments with a set of models, including several that make novel improvements to recent hierarchical dialog generation architectures through sentiment and semantic knowledge distillation on the utterance level. Finally, we open-source the interactive evaluation platform we built and the dataset we collected to allow researchers to efficiently deploy and evaluate dialog models.

Publication
In Neural Information Processing Systems (NeurIPS)
Natasha Jaques
Natasha Jaques

My research is focused on Social Reinforcement Learning–developing algorithms that use insights from social learning to improve AI agents' learning, generalization, coordination, and human-AI interaction.

Related